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Abstract: Recently, Rebek has synthesized self-replicating molecules in the laboratory. Given the importance of 
such molecules, we are introducing a simple model of self-replicating molecules for the first time. The model 
mimics the experimental template mechanism and is an important new dynamical model with cubic nonlinearity. 
This nonlinearity is modeled after the self-replicating mechanism recently reported in the literature. Here we 
consider the full templator model and a minimal model, which disregard the uncatalyzed step in the mechanism. 
For the minimal model, we find an exact analytical expression for the locations of the bifurcation points. For the 
full model, however, we obtain analytical approximations for the bifurcation points that compare very well with 
the exact numerical solutions. 

Introduction 

Eighty years after Lotka�s prediction of damped oscillations 
[1] and Bray�s experimental paper [2], chemical oscillations 
have developed into a robust research field both theoretically 
and experimentally. A solid introduction to chemical 
oscillations, therefore, is imperative in the undergraduate 
curriculum [3, 4]. Moreover, the overlap with other areas, like 
biology, makes the study of chemical oscillations a fertile 
multidiciplinary field. Consequently, the need for different 
points of view and techniques makes the study of nonlinear 
chemical kinetics a welcoming field to newcomers. As a result, 
an accessible introduction to this field should be part of an 
undergraduate education in chemistry. 

Currently, most texts use the Lotka�Volterra model (LVM) 
[1�5] to introduce some, but not all, important mathematical 
concepts in nonlinear chemical kinetics. Though this is 
common practice, the LVM is not an optimal example. 
Recently, we have presented a modified LVM [6] that allows 
us to introduce several of the fundamental concepts of 
nonlinear dynamics. Although this model is dynamically 
richer, it is not related to any chemical system. We also 
presented an example of chemical oscillations in enzyme 
kinetics [7]. This model�s algebraic calculations, however, 
proved to be quite challenging and time consuming to most 
undergraduate students. A chemical-based model with 
accessible algebraic manipulations is, therefore, desirable. 

With this purpose in mind, we introduce another model. 
This time, the model is based on Julius Rebeck, Jr.�s 
experimental work on self-replicating molecules [8�12]. In 
Section 2 we review Rebek�s work and introduce the templator 
model that mimics these experiments. We proceed with a 
linear analysis of a simplified version of the templator in 
Section 3. In Section 4 we consider the full templator model 
and derive approximate expressions for the bifurcation points. 
Also we compared our analytical expressions to an exact 
numerical analysis. Finally, in Section 5 we discuss the use of 
the model in an undergraduate environment. 

Self-Replicating Molecules 

Periodic oscillations are characteristic of any living system 
[19]. Oscillations can be observed in systems spanning many 
orders of magnitude, from ecosystems to the human body. 
Although current understanding of oscillating systems is fairly 
limited, it is believed that without an autocatalytic step 
chemical oscillation will not be observed. Studying 
autocatalytic systems, therefore, gives us a better feeling for 
the factors that determine whether or not a system will display 
stable limit cycles. Examining the characteristics associated 
with living systems will deepen our understanding of those 
systems and may shed light on the conditions required for life 
to appear. A number of oscillating systems have been studied 
extensively. Among these are the Lotka�Volterra system and 
the Oregonator (or BZ reaction) [20]; other theoretical 
oscillating systems ignore conservation of mass. Even though 
such systems produce oscillation, their usefulness in studying 
life is diminished because the chemical models proposed are 
not realistic from a chemical point of view. 

Our work attempts to find a reasonable self-replicating 
chemical model that sustains oscillations. In particular, we 
focus on a template model of a primitive self-replicating 
molecule. Self-replicating molecular systems have been 
synthesized in the laboratory by Rebek et al. [8�12]. Rebek�s 
self-replicating system is represented schematically below: 

 uncat    kA B P+  →  (1) 

 templ    kA B P P P+ +  → +  (2) 

Molecule A can stand for adenine ribose (AR), diaminotriazine 
xanthene (DIX), adenine ribose-Z (ZAR), or adenine ribose-Z-
N2 (ZNAR), where Z is a blocking group like 
benzyloxycarbonyl. The other molecule, B, can be naphthaline 
imide (NI), biphenyl imide (BI), or thymine (T). We notice that 
these molecules are self-complementary and when bound 
covalently form a product that can work as a template for the 
formation of more product, except for DIXBI that cannot self-
replicate. 
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In the uncatalyzed step, molecules A and B collide in a 
relatively low-probability process to form the template P. The 
structure of the product P is such that, once it is formed, it 
preferentially binds A and B in a conformation that facilitates 
covalent bonding with the formation of P. The newly created 
template and the template from which it was formed can then 
split apart to catalyze further reactions. Because this 
mechanism has been observed in the laboratory, a templator 
model is clearly chemically meaningful. 

In particular we consider the most efficient self-replicating 
molecule. In this case the mixture of adenine ribose and 
thymine yields ART. The mechanism includes an uncatalyzed 
formation of the self-replicating species with rate constant Ku: 

 u    kA B P+  →  (3a) 

 ` t    kA B P P P+ +  → +  (3b) 

with rate constant kt. 
To prevent the system from reaching equilibrium, we pump 

A and B into the system from a pool A0, B0 at a constant rate, 
k0, 

 0
0     kA A →  (3c) 

 0
0    kB B →  (3d) 

We also assume that P is removed by an enzymatic reaction 
that converts it to R. Namely, we consider the following step: 

 m M,    k KP R →  (3e) 

where km and KM are the constants associated with an 
enzymatic reaction. 

The ordinary differential equations (ODEs) associated with 
eqs 3a�3e are 

 0 0 u t
dA k A K AB k ABP
dτ

= − −  (4a) 

 0 0 u t
dB k B K AB k ABP
dτ

= − −  (4b) 

 m
t

M
u

dP k PK AB k ABP
d K Pτ

= + −
+

 (4c) 

Furthermore, using the following scaling: 
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we obtain a set of dimensionless differential equations, 

 0 0 u
da r a k ab abc
dt

= − −  (6a) 

 0 0 u
db cr b k ab
dt K c

= − −
+

 (6b) 

 u
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dt K c
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+

 (6c) 

where we have defined the following dimensionless 
parameters: 
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Now, we consider the following simple definitions 

 
2

a bx +=  (8a) 

 
2

a by −=  (8b) 

where x stands for either the rescaled concentration of a or b, 
and y the numerical difference between a and b. Using these 
variables, we obtain the following equations: 

 ( ) ( ) ( )2 2 2 20 0
0 u2

a bdx r k x y x y c
dt

+
= − − − −  (9a) 

 ( )0 0
0 2

a bdy r
dt

−
=  (9b) 
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 ( ) ( )2 2 2 2
u

dc ck x y x y c
dt K c

= − + − −
+

 (9c) 

Furthermore, by selecting the same pumping concentration, a0 

= b0, and defining ( )0 0
0 2

a b
x

+
= , we obtain 

 ( ) ( )2 2 2 2
0 0 u

dx r x k x y x y c
dt

= − − − −  (10a) 

 0dy
dt

=  (10b) 

 ( ) ( )2 2 2 2
u

dc ck x y x y c
dt K c

= − + − −
+

 (10c) 

Now we can integrate eq 10b and consider that at t = 0 the 
concentrations of a and b are the same, for example, y(0) = 0. 
Using this initial condition, we trivially obtain that y(t) = 0. 
Namely, if the initial difference in concentration between a 
and b is zero, it is zero for any other time. With this 
simplification, we reduce the number of differential equations 
from three to two: 

 ( )2 2
0 u 1  ,dx f k x x c f x c

dt
= − − ≡  (11a) 

 ( )2 2
u 2  ,dc ck x x c f x c

dt K c
= + − ≡

+
 (11b) 

where we have defined f0 = r0a0. Equation 11 constitutes the 
templator model of self-replicating molecules. 

Minimal Model, ku = 0 

The elimination of the uncatalyzed reaction, eq 3a, defines 
the minimal templator model. On the one hand, this 
simplification allows us to carry on a linear stability analysis 
without the help of any symbolic algebraic algorithm. On the 
other hand, it introduces a fixed point at infinity when c → 0. 
Thus in the analysis we will stay away from this fixed point. 

First, we find the steady states of eqs 11, 

 01 fx
K
−=  (12) 

 0

01
Kfc

f
=

−
 (13) 

Because the concentrations are greater than zero, the physical 
region in parameter space is defined by 

 0 1f <  (14) 

Once these stationary state solutions are obtained, stability 
analysis [13�22] studies what happens to the dynamic 
variables, x  and c , when they are slightly perturbed. Namely, 

we want to know if the perturbations to x  and c  grow or die 
out. This information can be extracted from the relaxation 
matrix, R, which is the Jacobian associated to a set of ODEs 
[18]. The relaxation matrix is defined by the following 
equation: 

 
( ) ( )

( ) ( )

1 1

, ,

2 2

, ,

x c x c

x c x c

f f
x c

f f
x c

∂ ∂    
    ∂ ∂    =  ∂ ∂        ∂ ∂    

R  (15) 

Next, we have to find the corresponding eigenvalues of R. 
The analysis of the eigenvalues will yield the dynamic 
properties of the steady-state solutions.  

Finding the eigenvalues of R is equivalent to finding the 
solutions, λ, of the following equation: 

 0λ− =R I  (16) 

where I is the identity matrix, and the vertical lines stand for 
the determinant. For any two variable models, eq 16 reduces to 
the following characteristic quadratic polynomial: 

 2 tr det 0λ λ− + =R R  (17) 

where trR and detR stand for the trace and determinant of R. 
Furthermore, the solutions of the quadratic equation are 

 ( )21 tr tr 4det
2

λ± = ± −R R R  (18) 

From this equation, we can infer general properties for any 
two-variable models. First, consider the case of a negative 
determinant, detR < 0. In this case we get two real 
eigenvalues, one positive and one negative. These two values 
imply that the steady-state solution is a saddle point. Second, 
we consider the case of a positive determinant of R and 4 detR 
less than (trR)2. These two conditions imply two real 
eigenvalues both either positive or negative. On the one hand, 
if the trace is negative, then both eigenvalues are negative, and 
we have a stable node. On the other hand, if the trace is 
positive, then both eigenvalues are positive, and we have an 
unstable node. In the particular case where detR = 0, we obtain 
one zero eigenvalue and a second eigenvalue that is either 
negative or positive. Finally, we consider the case of a positive 
determinant and 4 detR > (trR)2. In this case we have two 
imaginary eigenvalues, and the stability of the solutions is now 
determined by the real part, which in this case is given by the 
trace of the relaxation matrix. Damped oscillations will be 
observed for a stable focus if the trace of R is negative. In 
contrast, so-called spiraling out will be observed for an 
unstable focus if the trace of R is positive. In the latter case, 
the growing oscillations most likely will settle in a stable limit 
cycle. 

For our minimal templator, we first find the following 
relaxation matrix: 
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Figure 1. Parameter space diagram, K versus f0, for the minimal 
templator model. The regions are divided by the curves trR = 0 and 
discriminant = 0. 
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Second, we find the trace and the determinant of R 
calculated at the steady states: 

 ( )3tr  2x c x= −R  (20) 

 ( )3 2det 2 1x c x c= −J  (21) 

The solutions to 

 3 2 0x − =  (22) 

define a curve in parameter space and determine the 
bifurcation points. At these points, the eigenvalues are pure 
imaginary because trR = 0. Also, for a fixed value of f0, we can 
solve eq 22, 

 
1

32x =  (23) 

If we use eq 12, we obtain an expression for the bifurcation 
value of K as a function of f0, 

 ( )2
3bif

02 1K f−= −  (24) 

This equation gives us the value of K at which the stable 
steady state becomes unstable. In other words, if K < Kbif, the 
trace is positive, and thus the steady state unstable. 

For completeness, we need to find the zeros for the 
discriminant, 

( ) ( )22 2 3dis 4det  2 8 0trace x c c x x ≡ − = + − =  
J J  (25) 

From eq 25, we find that the nontrivial zeros of the 
discriminant satisfy the following relation: 

 
( )23

8

2

xc
x

=
+

 (26) 

Equations 12�13 allow us to reduce eq 26 to 
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where we have defined 

 
3

2
01 fu

K
− ≡   

 (28) 

Solving the quadratic equation satisfied by u, we get 
eventually two solutions for K, 
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 (29) 

These equations separate the parameter space into four 
regions. Regions I and II in Figure 1 represent stable steady-
state solutions like fixed points and damped oscillations. The 
last two regions, III and IV, are regions where the steady states 
are unstable. 

As an example, we have considered f0 = 0.30 and K = 0.30. 
From Figure 1 we conclude that we have an unstable steady 
state. For this case, we integrated eqs 11a and 11b and found 
oscillatory solutions. We depict the oscillation of the two-
variable template mechanism in Figure 2. 

In summary, our two-variable and two-parameter minimal 
template model is capable of sustaining stable oscillatory 
solutions. In addition, a simple calculation yields the 
bifurcation curve in parameter space. 

Template Model 

In this section we consider the uncatalyzed step and perform 
an analysis similar to that in the previous section. First, we 
find the steady states of eq 11, 
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Second, we calculate the relaxation matrix, R, and find 
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Table 1. Dimensionless Values 

Parameter Value 
ku 0 
f0 0.30 
K 0.30 

 

 
Figure 2. Time series of x and c for the minimal templator model. 
Parameter values are taken from Table 1. 

( )

2

2
4 2u

u o

2  2                       

2  2           +  1  

ux c k x x

k xx c k x x c x c f
c

 − − −
 =   + − −   

R  (31) 

where we have used some of the relations satisfied by eq 30. 
Now we can consider the trace of R, 

 ( ) ( )( )3 2u
u 0tr 2  2 +  1k xx c x k x c f

c
 = − − − −  

R  (32) 

From eq 32, we find that the nontrivial zeros satisfy the 
following cubic equation: 
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Using eq 30, we can now express eq 33 as 
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From eq 34, we find the following transcendental equation: 
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Here we have two choices. One is to numerically solve eq 35 
for K as a function of f0. Another option is to consider 
approximate analytical solutions for ku << 1. In the former 
case, we used MATHEMATICA�s ContourPlot function [23] 
to obtain the zero-trace curve. In the latter case, we can expand 
the right-hand side of eq 35 for small values of ku and get a 
quadratic equation for K with solutions 
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Notice that there is no real solution if 
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This condition implies that there is a minimum value of f0 
associated with real solutions and thus to the stability of the 
steady states. 

Finally, we could perform a final expansion of eq 36 for 
small values of ku and obtain 

 ( ) ( )( ) ( )2
3 0 0 u 2

0 u2
0

1 2
2 1 0

3
f f k
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− +
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In Figure 3a, we compare the numerical solution of eq 35 and 
the minimal templator�s region of instability in parameter 
space. We can observe dramatic changes in the dynamic 
behavior of the templator model. From this comparison, we 
concluded that the minimal model is, therefore, structurally 
unstable with respect to the uncatalyzed step. Other more 
sophisticated studies of the templator�s dynamics have been 
published elsewhere [24�25]. 

In Figure 3b we compare the numerical solution of eq 35 
and the approximation given by eqs 38a and 38b. Notice the 
horizontal dashed line depicting the region of no solution and 
the point where the approximate solutions are equal. Thus, the 
crude approximation gives us an accurate qualitative 
description of the regions in parameter space. One would 
expect that our approximation would give us a better 
description for ku = 0.001 than for ku = 0.010, but this is left as 
an exercise for the reader. So, eqs 38a and 38b, even for ku = 
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Table 2. Dimensionless Values 

Parameter Value 
ku 0.010 
K 0.30 

 

 
Figure 3. Parameter-space diagram, K versus f0 for the templator 
model. The regions are divided by the curve trR = 0. The dashed curve 
represents the approximate solutions and the full line the exact 
numerical solutions. 

0.010, give us a good qualitative description of the system�s 
stability properties. 

Discussion 

Typically, we first discuss the minimal templator in the 
classroom to introduce linear stability analysis. Second, we 
assign the analytical study of the full templator model as a 

problem set. The former model shows stable oscillations and a 
simple bifurcation relation. Also, all the linear stability 
analysis associated with this model is extremely accessible to 
undergraduates. Third, we study the templator numerically in a 
laboratory session. The numerical analysis of the parameter 
space can be carried out using MATHEMATICA. Also, any 
available ODE solver can be used to integrate the differential 
equations and obtain time series. Finally, a laboratory report is 
required, which should include several examples of the 
different bifurcations as well as the predictions derived from 
the analytical analysis. As a result, the students have a better 
sense of how the analytical and numerical analyses, carried out 
in chemical kinetics, complement each other. 

As an example of a possible study, we consider different 
parameter values from Figure 3 and discuss the time series. 
First we fix K at 0.20 and vary f0 taking values from both sides 
of the unstable interval. This means that as we vary f0 the 
system goes through two bifurcations. In Figure 4, we depict 
damped oscillations for f0 = 0.20, K = 0.30, and ku = 0.010. 
Now, we increase the value of f0. Because we change the value 
to f0 = 0.30, the system goes through a bifurcation, and we 
observe the stable oscillations depicted in Figure 5. If we again 
increase the value to f0 = 0.60, the system goes through a 
second bifurcation, and we recover damped oscillations, as we 
can see in Figure 6. Finally, we consider f0 = 0.80 and observe 
the stable node in Figure 7. 

Now we fix fo at 0.30 and vary K. Again, the system goes 
through two bifurcations. Initially, we find the stable node at K 
= 0.04 depicted in Figure 8. We finally consider K = 0.4 in 
Figure 9 and observe damped oscillations. When we compare 
Figures 5, 8, and 9, we observe the transition due to the two 
bifurcations as we change K. 

Remember that damped oscillations are associated with a 
negative real part and a nonvanishing imaginary part of the 
relaxation matrix�s eigenvalue. In contrast, stable oscillations 
have a positive real part and a nonvanishing imaginary part. 
Finally, a node steady state has a negative real part and a 
vanishing imaginary part, as we can observe in Figures 7 and 
8. 

In the present work, we introduce a template mechanism of 
autocatalysis. This model mimics a self-replicating template 
mechanism observed experimentally in chemical systems in 
the laboratory. First we analyze a simple two-variable, two-
parameter minimal model. For this minimal model, we obtain 
analytical expressions for the bifurcation curve in parameter 
space. This curve locates the bifurcation points and separates 
parameter space into regions where the trace of the relaxation 
matrix is either greater or less than zero. 

For the templator model, we obtain approximate analytical 
expressions for the bifurcation points that are very good when 
compared with the exact numerical solution. In addition, we 
find that the templator model can go through two bifurcations 
when we vary either K or f0. This last property is more physical 
because it has been observed experimentally that chemical 
systems are able to sustain oscillations for parameter values 
within an interval. Thus, minimum and maximum parameter 
values define an unstable region in parameter space. 

In summary, we have introduced an autocatalytic template 
mechanism that is an important new dynamical model with a 
cubic nonlinearity. This nonlinearity is modeled after the self-
replicating mechanism recently reported in the literature [8�
12]. 
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Figure 4. Time series of x and c for the templator model. In this case 
f0 = 0.20, and the other parameters are taken from Table 2. 

 
Figure 5. Time series of x and c for the templator model. In this case 
f0 = 0.30 and the other parameters are taken from Table 2. 

 
Figure 6. Time series of x and c for the templator model. In this case 
f0 = 0.60 and the other parameters are taken from Table 2. 

 
Figure 7. Time series of x and c for the templator model. In this case 
f0 = 0.80 and the other parameters are taken from Table 2. 
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Figure 8. Time series of x and c for the templator model. In this case 
K = 0.04 and the other parameters are taken from Table 3. 

 
Figure 9. Time series of x and c for the templator model. In this case 
K = 0.4 and the other parameters are taken from Table 3. 

Table 3. Dimensionless Values 

Parameter Value 
ku 0.010 
f0 0.30 
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